• Zum Seiteninhalt (Accesskey 1)
  • Zur Hauptnavigation (Accesskey 2)
  • Bundesministerium Frauen, Wissenschaft und Forschung
  • Forschungsinfrastruktur-Datenbank
  • Start
  • Search
  • Mapping
    • Statistics by region
    • Cluster
    • Monitoring
    • Gallery
  • About
    • R&D - Institutions
    • Federal Ministry of Women, Science and Research (BMFWF)
    • Austrian Federal Economic Chamber (WKÖ)
    • Federal Ministry of Economy, Energy and Tourism (BMWET)
  • FAQs & Info
    • FAQs
      • Description of the Research Infrastructure
      • Methods & Services for Research Infrastructure
      • Research infrastructure categories
      • Additional Information to research Infrastructure
      • Search Engine
      • Contact
    • Information
      • National Strategy of Research Infrastructure
      • Research infrastructures in the European Union
      • Research infrastructure databases / Research infrastructure networks
      • BMBWF Research Infrastructure Database: Evaluation Study 2022
      • Awards and press releases
  • Registrieren
  • Login
  • DE
  • EN
Large equipment Clusters „Quantum“ Monitoring „HRSM 2016“

ADR closed cycle cryostat

  • To Overview
  • »
  • 12 / 190
  • »

Technical University of Vienna

Wien | Website

Open for Collaboration

Short Description

We would like to be able to perform quantum information measurements in crystals made from inert gases such as neon, argon, and krypton. However, the creation of these type of crystals requires us to operate at temperatures near absolute zero. Furthermore, the process of creating these crystals requires us to start from the gas form and immediately change the gas to a solid. With both of these requirements taken into account, the cryogenic system will need to by dry and in vacuum. A pulse tube cooler exactly fits these requirements.

To perform the quantum information measurements, we will use a low-temperature superconducting cir-cuit. In order for this circuit to operate efficiently, we will need to cool down to temperatures below 1 kelvin. Experimentally this is typically done with liquid helium, however as stated above this is not feasible. As such, we would like to acquire an adiabatic demagnetization refrigerator (ADR). This piece of equipment allows us to operate at temperatures very close to absolute zero while not requiring any liquids.

To conclude, in order to perform these quantum information experiments we require an apparatus that does not require liquids and is capable of reaching temperatures near absolute zero in vacuum.

Contact Person

Stephan Schneider

Research Services

The cryostat is most of the time not available for external use, because of the ongoing in-house experiments.

Methods & Expertise for Research Infrastructure

low temperature physics, micro wave technology, optics, vacuum

Terms of Use

see http://atomchip.org/

Contact

Stephan Schneider
Atomphysik und Quantenoptik
stephan.schneider@tuwien.ac.at
http://atomchip.org/

Location

Location on map

Share this entry

  • Facebook
  • X.com
  • Pinterest
  • LinkedIn
  • E-Mail
© 2025 FEDERAL MINISTRY of WOMEN, SCIENCE and RESEARCH
  • Terms of use / General Data Protection Regulation
  • Declaration on accessibility
  • Imprint
  • Data protection settings